category
date
link
slug
status
summary
tags
type

📄 原文题目

Amino acid variants at the P94 position in Staphylococcus aureus class A sortase modulate substrate binding and enzyme activity

🔗 原文链接

💡 AI 核心解读

创新性地系统评估了P94位点氨基酸突变对分选酶活性和底物特异性的影响,发现多个优于现有P94R突变体的变体(如P94A/D),揭示该位点在调控底物进入和酶活性中的关键作用,为开发更高效的分选酶介导连接技术提供理论依据。

📝 英文原版摘要

The surface of gram-positive bacteria is a highly regulated environment with specific attachment of proteins required for viability. Sortase enzymes are cysteine transpeptidases that recognize and ligate substrates to the peptidoglycan layer in these microorganisms, which can be highly pathogenic (e.g., Staphylococcus aureus, Streptococcus pyogenes, etc.). As such, sortases represent a potentially novel target for antibiotic development. In addition, the catalytic activity of sortase enzymes is utilized in sortase mediated ligation (SML) engineering approaches for a variety of uses. In SML experiments, engineered variants of Staphylococcus aureus sortase A (saSrtA) are the most widely used enzymes. One of the mutated amino acids in the previously engineered pentamutant (or saSrtA5M) enzyme is P94. Structural analyses of experimental saSrtA structures revealed that P94 interacts directly with Y187 when saSrtA is in its inactive conformation. While saSrtA5M, developed via directed evolution, contains a P94R mutation, we wanted to interrogate this position further and ask if other single P94 mutations may reveal a greater effect on activity and/or substrate specificity. We created 18 P94X mutations (excluding P94C), and tested relative activity using a fluorescence resonance energy transfer (FRET) assay for 4 substrate sequences: LPATG, LPETG, LPKTG, and LPSTG. We identified several P94 variants that outperformed the single mutant P94R for all peptides tested, including P94A, P94D, P94E, P94G, P94H, P94N, P94Q, P94S, and P94T. We further observed that the reactivity of substrates with variations in the central position of the pentapeptide recognition motif (LPXTG) can be sensitive to the identity of the P94X residue. We tested P94A and P94D saSrtA5M variants and found that
, depending on LPXTG sequence, these variants could outperform saSrtA5M in activity > 3-fold. Finally, we compared saSrtA5M and P94D saSrtA5M in a model sortase-mediated ligation reaction using a LPKTG substrate and saw ~2-fold greater product formation. Taken together, we characterized an important position that modulates substrate access and activity in saSrtA. Furthermore, we argue that future studies which combine rational design and high throughput approaches, e.g., directed evolution, may result in sortase variants with increased SML potential.
整合、规模化方法解决TSC2意义不明变异体基于腺嘌呤的分子转子作为高亮度通用荧光核碱基
Loading...